
Final Exam Summary (Everything, formula)

1 Integral

2 Riemann Sums

1.
∫ b
a
f(x)dx = limn→∞

∑n
i=1 f(xi)∆x(Limit of Right-hand sum RIGHT(n))

2.
∫ b
a
f(x)dx = limn→∞

∑n−1
i=0 f(xi)∆x(Limit of Left-hand sum LEFT(n))

3.
∫ b
a
f(x)dx ≈

∑n−1
i=0 f(xi+xi+1

2
)∆x(Limit of Mid sum MID(n))

4.
∫ b
a
f(x)dx ≈

∑n−1
i=0

f(xi)+f(xi+1)
2

∆x(Limit of Trapezoid sum TRAP(n))

5. ∆(x) =
b− a
n

6. LEFT (n)+RIGHT (n)
2

= TRAP (n)

7. MID(n) 6= TRAP (n)

8. Error estimation: |LEFT (n) − f(x)| < |LEFT (n) − RIGHT (n)| = (f(b) −
f(a))∆x. This usually gives a bound for n.

2.1 Properties of Riemann sums:

1. If the graph of f is increasing on [a, b], then LEFT (n) ≤
∫ b
a
f(x)dx ≤ RIGHT (n)

2. If the graph of f is decreasing on [a, b], then RIGHT (n) ≤
∫ b
a
f(x)dx ≤ LEFT (n)

3. If the graph of f is concave up on [a, b], then MID(n) ≤
∫ b
a
f(x)dx ≤ TRAP (n)

4. If the graph of f is concave down on [a, b], then TRAP (n) ≤
∫ b
a
f(x)dx ≤MID(n)
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2.2 Properties of Definite Integrals

1. intabf(x)dx = −
∫ b
a
f(x)dx

2.
∫ a
b
f(x)dx+

∫ b
c
f(x)dx =

∫ a
c
f(x)dx

3.
∫ a
b

(f(x)± g(x))dx =
∫ a
b
f(x)dx±

∫ a
b
g(x)dx

4.
∫ a
b
cf(x)dx = c

∫ a
b
f(x)dx

5. Symmetry due to the oddity of the function.

6. Average value of function f(x) in [a, b] is 1
b−a

∫ b
a
f(x)dx.

Theorem 2.1. The Fundamental Theorem of Calculus:
If f is continuous on interval [a, b] and f(t) = F ′(t), then

∫ b
a
f(t)dt = F (b) − F (a).

Second FTC (Construction theorem for Antiderivatives) If f is a continuous
function on an interval, and if a is any number in that interval then the function F
defined on the interval as follows is an antiderivative of f :

F (x) =

∫ x

a

f(t)dt

1.
∫
Cdx = 0

2.
∫
kdx = kx+ C

3.
∫
xndx = xn+1

n+1
+ C, (n 6= −1)

4.
∫

1
x
dx = ln |x|+ C

5.
∫
exdx = ex + C

6.
∫

cosxdx = sinx+ C

7.
∫

sinxdx = − cosx+ C

Properties of antiderivatives:

1.
∫

(f(x)± g(x))dx =
∫
f(x)dx±

∫
g(x)dx

2.
∫
cf(x)dx = c

∫
f(x)dx

2.3 Integration Techniques

1. Guess and Check

2. Substitution du = f(x)′dx if u = f(x)

3. By parts
∫
udv = uv −

∫
vdu

4. Partial fractions p(x)
(x+c1)2(x+c2)(x2+c3)

= A
x+c1

+ B
(x+c1)2

+ C
x+c2

+ Dx+E
x2+c3
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3 Find Area/Volumes by slicing

1. Compute the area: Think about slicing the area into parallel line segments.

2. Disk Method:
Horizontal axis of revolution (x-axis): V =

∫ b
a
π(f(x)2 − g(x)2)dx

Vertical axis of revolution (y-axis): V =
∫ b
a
π(f(y)2 − g(y)2)dy

3. Shell Method:
Horizontal axis of revolution (x-axis): V =

∫ b
a

2πy(f(y)− g(y))dy

Vertical axis of revolution (y-axis): V =
∫ b
a

2πx(f(x)− g(x))dx

3.1 Mass

The basic formula we are doing is:

1. One dimensional: M = δl where M is the total mass, δ is the density, l is line.

2. Two dimensional: M = δA where M is the total mass, δ is the density, A is Area.

3. Three dimensional (real world): M = δV where M is the total mass, δ is the
density, V is Volume.

3.2 Work

Key formula we are using:
Work done = Force ·Distance or W = F · s
Integration version: W =

∫ b
a
F (x)dx

3.3 L’Hopital’s rule

LHopitals rule: If f and g are differentiable and (below a can be ±∞)
i)f(a) = g(a) = 0 for finite a,
Or ii)limx→a f(x) = limx→a g(x) = ±∞,
Or iii)limx→∞ f(x) = limx→∞ g(x) = 0 then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

3.4 Dominance

We say that g dominates f as x→∞ if limx→∞ f(x)/g(x) = 0.
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4 Improper integral

There are two types of improper integral.

• The first case is where we have the limit of the integration goes to infinity, i.e.
limb→∞

∫ b
a
f(x)dx.

• The integrand goes to infinity as x→ a.

4.1 Converges or diverges?

1. Check by definition, this means check the limit directly.

2. p-test.

3. Exponential decay test. ∫ ∞
0

e−axdx

converges for a > 0.

4. Comparison test.
If f(x) ≥ g(x) ≥ 0 on the interval [a,∞] then,

• If
∫∞
a
f(x)dx converges then so does

∫∞
a
g(x)dx.

• If
∫∞
a
g(x)dx diverges then so does

∫∞
a
f(x)dx.

5. Limit Comparison theorem.
Limit Comparison Test. If f(x) and g(x) are both positive on the interval [a, b)
where b could be a real number or infinity. and

lim
x→b

f(x)

g(x)
= C

such that 0 < C < ∞ then the improper integrals
∫ b
a
f(x)dx and

∫ b
a
g(x)dx are

either both convergent or both divergent.
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5 Probability

5.1 PDF and CDF

Definition 5.1. A function p(x) is a probability density function or PDF if it
satisfies the following conditions

• p(x) ≥ 0 for all x.

•
∫∞
−∞ p(x) = 1.

Definition 5.2. A function P (t) is a Cumulative Distribution Function or cdf, of
a density function p(t), is defined by P (t) =

∫ t
−∞ p(x)dx, which means that P (t) is the

antiderivative of p(t) with the following properties:

• P (t) is increasing and 0 ≤ P (t) ≤ 1 for all t.

• limt→∞ P (t) = 1.

• limt→−∞ P (t) = 0.

Moreover, we have
∫ b
a
p(x)dx = P (b)− P (a).

5.2 Probability, mean and median

Probability

Let us denote X to be the quantity of outcome that we care (X is in fact, called the

random variable). P{a ≤ X ≤ b} =
∫ b
a
p(x)dx = P (b)− P (a)

P{X ≤ t} =
∫ t
−∞ p(x)dx = P (t)

P{X ≥ s} =
∫∞
s
p(x)dx = 1− P (s)

The mean and median

Definition 5.3. A median of a quantity X is a value T such that the probability of
X ≤ T is 1/2. Thus we have T is defined such that

∫ T
−∞ p(x)dx = 1/2 or P (T ) = 1/2.

Definition 5.4. A mean of a quantity X is the value given by

Mean =
Probability of all possible quantity

Total probability
=

∫∞
−∞ xp(x)dx∫∞
−∞ p(x)dx

=

∫∞
−∞ xp(x)dx

1
=

∫ ∞
−∞

xp(x)dx.

Normal Distribution

Definition 5.5. A normal distribution has a density function of the form

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

where µ is the mean of the distribution and σ is the standard deviation, with σ > 0.
The case µ = 0, σ = 1 is called the standard normal distribution.
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6 Sequences and Series

6.1 Sequence

If a sequence sn is bounded and monotone, it converges.

6.2 Series

Convergence Properties of Series:

1. If
∑∞

n=1 an and
∑∞

n=1 bn converge and if k is a constant, then∑∞
n=1(an + bn) converges to

∑∞
n=1 an +

∑∞
n=1 bn.∑∞

n=1 kan converges to k
∑∞

n=1 an

2. Changing a finite number of terms in a series does not change convergence,

3. If limn→∞ an 6= 0 or limn→∞ an does not exist, then
∑∞

n=1 an diverges. (!)

4. If
∑∞

n=1 an diverges, then
∑∞

n=1 an diverges if k 6= 0.

Moreover, there are several test to determine if a series is convergent.

1. The Integral Test
Suppose an = f(n), where f(x) is decreasing and positive.
a. If

∫∞
1
f(x)dx converges, then

∑∞
n=1 an an converges.

b. If
∫∞
1
f(x)dx diverges, then

∑∞
n=1 an an diverges.

2. p-test
The p-series

∑∞
n=1 1/np converges if p > 1 and diverges if p ≤ 1.

3. Comparison Test
Suppose 0 ≤ an ≤ bn for all n beyond a certain value.
a. If

∑∞
n=1 bn converges, then

∑∞
n=1 an converges.

b. If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

4. Limit Comparison Test
Suppose an > 0 and bn > 0 for all n. If limn→∞ an/bn = c where c > 0, then the
two series

∑∞
n=1 an and

∑∞
n=1 bn either both converge or both diverge.

5. Convergence of Absolute Values Implies Convergence
If
∑∞

n=1 |an| converges, then so does
∑∞

n=1 an.

6. The Ratio Test For a series
∑∞

n=1 an, suppose the sequence of ratios |an+1|/|an|
has a limit: limn→∞ |an+1|/|an| = L, then

• If L < 1, then
∑∞

n=1 an converges.

• If L > 1, or if L is infinite, then
∑∞

n=1 an diverges.
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• If L = 1, the test does not tell anything about convergence of
∑∞

n=1 an (!).

7. Alternating Series Test A series of the form
∑∞

n=1(−1)n−1an = a1 − a2 + a3 −
a4 + . . .+ (−1)n−1an + . . . converges if 0 < an+1 < an for all n and limn→∞an = 0.

Error of alternating test: let S = limn→∞ Sn, then have |S − Sn| < an+1.

Notably, We say that the series
∑∞

n=1 an is

• absolutely convergent if
∑∞

n=1 an and
∑∞

n=1 |an| both converge.

• conditionally convergent if
∑∞

n=1 an converges but
∑∞

n=1 |an| diverges.

Test we consider for proving convergence:

1. The integral test

2. p-test

3. Comparison test

4. Limit comparison test

5. Check the absolute convergence of
the series

6. Ratio Test

7. Alternating Series Test

Test we consider for proving divergence:

1. The integral test

2. p-test

3. Comparison test

4. Limit comparison test

5. Ratio Test

6. Check limn→∞ 6= 0 or limn→∞ does
not exist.
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6.3 Geometric Series

There is a special series that we learn about, which is the Geometric Series, notice that
the formula on the right hand side is what we called closed form. A finite geometric
series has the form

a+ ax+ ax2 + · · ·+ axn2 + axn1 =
a(1− xn)

1− x
For x 6= 1

An infinite geometric series has the form

a+ ax+ ax2 + · · ·+ axn2 + axn1 + axn + · · · = a

1− x
For |x| < 1
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6.4 Power Series

Definition 6.1. A power series about x = a is a sum of constants times powers of
(x− a):
C0 + C1(x− a) + C2(x− a)2 + . . .+ Cn(x− a)n + . . . =

∑∞
n=0Cn(x− a)n.

Moreover, each power series falls into one of the three following cases, characterized by
its radius of convergence, R.

• The series converges only for x = a; the radius of convergence is defined to be
R = 0.

• The series converges for all values of x; the radius of convergence is defined to be
R =∞.

• There is a positive number R, called the radius of convergence, such that the series
converges for |x− a| < R and diverges for |x− a| > R.

How to find radius of convergence: consider ratio test
The interval of convergence is the interval between a − R and a + R, including any
endpoint where the series converges.

6.5 Taylor Polynomial

Taylor Polynomial of Degree n Approximating f(x) for x near a is

f(x) ≈ Pn(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+ . . .+

f (n)(a)

n!
(x−a)n

We call Pn(x) the Taylor polynomial of degree n centered at x = a, or the Taylor poly
nomial about x = a.

6.6 Taylor Series

Taylor Series for f(x) about x = a is

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .+

f (n)(a)

n!
(x− a)n + . . .

We call Pn(x) the Taylor polynomial of degree n centered at x = a, or the Taylor poly
nomial about x = a.
f (n)(a) = {coefficient of xn} ∗ n!.
Moreover, there are several important cases that we consider, each of them is an Taylor
expansion of a function about x = 0:

• ex = 1 + x+ x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ x6

6!
+ x7

7!
+ x8

8!
+ · · · converges for all x
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• sin(x) =
∞∑
n=0

x2n+1

(2n+ 1)!
· (−1)n = x− x3

3!
+
x5

5!
− x7

7!
+ . . . converges for all x

• cos(x) =
∞∑
n=0

x2n

(2n)!
· (−1)n = 1− x2

2!
+ x4

4!
− x6

6!
+ . . . converges for all x

• (1 + x)p =
∑∞

k=0

(
p
k

)
xk =

∑∞
k=0

p!
k!(p−k)!x

k = 1 + px + p(p−1)
2!

x2 + p(p−1)(p−2)
3!

x3 +
· · · converges for − 1 < x < 1.

• ln(1 + x) =
∑∞

n=0
(−1)nxn+1

n+1
= x− x2

2
+ x3

3
− x4

4
+ · · · ,

Moreover, we can definitely find Taylor Series based on the existing series using four
methods:
Substitude/Differentiate/Integrate /Multiply

7 Parametric Equations and Polar Coordinate

7.1 Parametric Equations

Summarize, we have the slope: dy
dx

= dy/dt
dx/dt

and the concavity of the parametrized curve

to be d2y
dx2

= (dy/dx)/dt
dx/dt

The quantity vx = dx/dt is the instantaneous velocity in the x-direction; vy = dy/dt is
the instantaneous velocity in the y-direction. And we call that (vx, vy) to be the velocity
vector.
The instantaneous speed :v =

√
(dx/dt)2 + (dy/dt)2 =

√
(vx)2 + (vy)2.

Moreover, the distance traveled from time a to b is
∫ b
a
v(t)dt =

∫ b
a

√
(dx/dt)2 + (dy/dt)2dt

7.2 Polar Coordinate

7.2.1 Relation between Cartesian and Polar

Cartesian to Polar: (x, y) → (r =
√
x2 + y2, θ) (Here we have that tan θ = y

x
) θ does

not have to be arctan( y
x
)!

Polar to Cartesian: (r, θ)→ (x = r cos θ, y = r sin θ)

7.2.2 Slope, Arc length and Area in Polar Coordinates

slope of to be dy
dx

= dy/dθ
dx/dθ

The arc length from angle a to b is
∫ b
a

√
(dx/dθ)2 + (dy/dθ)2dθ =

∫ b
a

√
r2 + (dr/dθ)2dθ

Fact: area of the sector is 1/2r2θ, we have that for a curve r = f(θ), with f(θ) continu-

ously of the same sign, the area of the region enclosed is 1
2

∫ b
a
f(θ)2dθ
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