1 Integral

2 Riemann Sums

- 1. $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$ (Limit of Right-hand sum RIGHT(n))
- 2. $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x$ (Limit of Left-hand sum LEFT(n))
- 3. $\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} f(\frac{x_i + x_{i+1}}{2}) \Delta x$ (Limit of Mid sum MID(n))
- 4. $\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n-1} \frac{f(x_{i}) + f(x_{i+1})}{2} \Delta x$ (Limit of Trapezoid sum TRAP(n))

5.
$$\Delta(x) = \frac{b-a}{n}$$

- 6. $\frac{LEFT(n) + RIGHT(n)}{2} = TRAP(n)$
- 7. $MID(n) \neq TRAP(n)$
- 8. Error estimation: $|LEFT(n) f(x)| < |LEFT(n) RIGHT(n)| = (f(b) f(a))\Delta x$. This usually gives a bound for n.

2.1 Properties of Riemann sums:

- 1. If the graph of f is increasing on [a, b], then $LEFT(n) \leq \int_a^b f(x) dx \leq RIGHT(n)$
- 2. If the graph of f is decreasing on [a, b], then $RIGHT(n) \leq \int_a^b f(x) dx \leq LEFT(n)$
- 3. If the graph of f is concave up on [a, b], then $MID(n) \leq \int_a^b f(x) dx \leq TRAP(n)$
- 4. If the graph of f is concave down on [a, b], then $TRAP(n) \leq \int_a^b f(x) dx \leq MID(n)$

2.2 Properties of Definite Integrals

- 1. $int_b^a f(x)dx = -\int_a^b f(x)dx$
- 2. $\int_{b}^{a} f(x)dx + \int_{c}^{b} f(x)dx = \int_{c}^{a} f(x)dx$
- 3. $\int_{b}^{a} (f(x) \pm g(x)) dx = \int_{b}^{a} f(x) dx \pm \int_{b}^{a} g(x) dx$
- 4. $\int_{b}^{a} cf(x)dx = c \int_{b}^{a} f(x)dx$
- 5. Symmetry due to the oddity of the function.
- 6. Average value of function f(x) in [a, b] is $\frac{1}{b-a} \int_a^b f(x) dx$.

Theorem 2.1. The Fundamental Theorem of Calculus:

If f is continuous on interval [a, b] and f(t) = F'(t), then $\int_a^b f(t)dt = F(b) - F(a)$. Second FTC (Construction theorem for Antiderivatives) If f is a continuous function on an interval, and if a is any number in that interval then the function F defined on the interval as follows is an antiderivative of f:

$$F(x) = \int_{a}^{x} f(t)dt$$

- 1. $\int C dx = 0$
- 2. $\int k dx = kx + C$
- 3. $\int x^n dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$
- 4. $\int \frac{1}{x} dx = \ln |x| + C$
- 5. $\int e^x dx = e^x + C$
- 6. $\int \cos x dx = \sin x + C$
- 7. $\int \sin x dx = -\cos x + C$

Properties of antiderivatives:

- 1. $\int (f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx$
- 2. $\int cf(x)dx = c \int f(x)dx$

2.3 Integration Techniques

- 1. Guess and Check
- 2. Substitution du = f(x)'dx if u = f(x)
- 3. By parts $\int u dv = uv \int v du$
- 4. Partial fractions $\frac{p(x)}{(x+c_1)^2(x+c_2)(x^2+c_3)} = \frac{A}{x+c_1} + \frac{B}{(x+c_1)^2} + \frac{C}{x+c_2} + \frac{Dx+E}{x^2+c_3}$

3 Find Area/Volumes by slicing

- 1. Compute the area: Think about slicing the area into parallel line segments.
- 2. Disk Method:

Horizontal axis of revolution (x-axis): $V = \int_a^b \pi (f(x)^2 - g(x)^2) dx$ Vertical axis of revolution (y-axis): $V = \int_a^b \pi (f(y)^2 - g(y)^2) dy$

3. Shell Method: Horizontal axis of revolution (x-axis): $V = \int_a^b 2\pi y (f(y) - g(y)) dy$ Vertical axis of revolution (y-axis): $V = \int_a^b 2\pi x (f(x) - g(x)) dx$

3.1 Mass

The basic formula we are doing is:

- 1. One dimensional: $M = \delta l$ where M is the total mass, δ is the density, l is line.
- 2. Two dimensional: $M = \delta A$ where M is the total mass, δ is the density, A is Area.
- 3. Three dimensional (real world): $M = \delta V$ where M is the total mass, δ is the density, V is Volume.

3.2 Work

Key formula we are using: Work done = Force \cdot Distance or $W = F \cdot s$ Integration version: $W = \int_a^b F(x) dx$

3.3 L'Hopital's rule

L'Hopitals rule: If f and g are differentiable and (below a can be $\pm \infty$) i)f(a) = g(a) = 0 for finite a, Or $ii)\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \pm \infty$, Or $iii)\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$ then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

3.4 Dominance

We say that g dominates f as $x \to \infty$ if $\lim_{x\to\infty} f(x)/g(x) = 0$.

4 Improper integral

There are two types of improper integral.

- The first case is where we have the limit of the integration goes to infinity, i.e. $\lim_{b\to\infty} \int_a^b f(x) dx$.
- The integrand goes to infinity as $x \to a$.

4.1 Converges or diverges?

- 1. Check by definition, this means check the limit directly.
- 2. p-test.

	p < 1	p = 1	p > 1
Type I : $\int_{a}^{\infty} \frac{1}{x^{p}} dx$	diverges	$= \ln x \Big _{a}^{\infty} \Rightarrow \text{diverges}$	converges
Type II : $\int_{0}^{a} \frac{1}{x^{p}} dx$	converges	$= \ln x \Big _{0}^{a} \Rightarrow \text{diverges}$	diverges

3. Exponential decay test.

$$\int_0^\infty e^{-ax} dx$$

converges for a > 0.

4. Comparison test.

If $f(x) \ge g(x) \ge 0$ on the interval $[a, \infty]$ then,

- If $\int_a^{\infty} f(x) dx$ converges then so does $\int_a^{\infty} g(x) dx$.
- If $\int_a^{\infty} g(x) dx$ diverges then so does $\int_a^{\infty} f(x) dx$.
- 5. Limit Comparison theorem. Limit Comparison Test. If f(x) and g(x) are both positive on the interval [a, b) where b could be a real number or infinity. and

$$\lim_{x \to b} \frac{f(x)}{g(x)} = C$$

such that $0 < C < \infty$ then the improper integrals $\int_a^b f(x) dx$ and $\int_a^b g(x) dx$ are either both convergent or both divergent.

5 Probability

5.1 PDF and CDF

Definition 5.1. A function p(x) is a **probability density function** or PDF if it satisfies the following conditions

- $p(x) \ge 0$ for all x.
- $\int_{-\infty}^{\infty} p(x) = 1.$

Definition 5.2. A function P(t) is a **Cumulative Distribution Function** or cdf, of a density function p(t), is defined by $P(t) = \int_{-\infty}^{t} p(x) dx$, which means that P(t) is the antiderivative of p(t) with the following properties:

- P(t) is increasing and $0 \le P(t) \le 1$ for all t.
- $\lim_{t\to\infty} P(t) = 1.$
- $\lim_{t\to-\infty} P(t) = 0.$

Moreover, we have $\int_a^b p(x)dx = P(b) - P(a)$.

5.2 Probability, mean and median

Probability

Let us denote X to be the quantity of outcome that we care (X is in fact, called the random variable). $\mathbb{P}\{a \le X \le b\} = \int_a^b p(x)dx = P(b) - P(a)$ $\mathbb{P}\{X \le t\} = \int_{-\infty}^t p(x)dx = P(t)$ $\mathbb{P}\{X \ge s\} = \int_s^{\infty} p(x)dx = 1 - P(s)$

The mean and median

Definition 5.3. A median of a quantity X is a value T such that the probability of $X \leq T$ is 1/2. Thus we have T is defined such that $\int_{-\infty}^{T} p(x) dx = 1/2$ or P(T) = 1/2.

Definition 5.4. A mean of a quantity X is the value given by

$$Mean = \frac{\text{Probability of all possible quantity}}{\text{Total probability}} = \frac{\int_{-\infty}^{\infty} xp(x)dx}{\int_{-\infty}^{\infty} p(x)dx} = \frac{\int_{-\infty}^{\infty} xp(x)dx}{1} = \int_{-\infty}^{\infty} xp(x)dx.$$

Normal Distribution

Definition 5.5. A normal distribution has a density function of the form

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the mean of the distribution and σ is the standard deviation, with $\sigma > 0$. The case $\mu = 0$, $\sigma = 1$ is called the standard normal distribution.

6 Sequences and Series

6.1 Sequence

If a sequence s_n is bounded and monotone, it converges.

6.2 Series

Convergence Properties of Series:

- 1. If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge and if k is a constant, then $\sum_{n=1}^{\infty} (a_n + b_n)$ converges to $\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$. $\sum_{n=1}^{\infty} ka_n$ converges to $k \sum_{n=1}^{\infty} a_n$
- 2. Changing a finite number of terms in a series does not change convergence,
- 3. If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then $\sum_{n=1}^{\infty} a_n$ diverges. (!)
- 4. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges if $k \neq 0$.

Moreover, there are several test to determine if a series is convergent.

1. The Integral Test

Suppose $a_n = f(n)$, where f(x) is decreasing and positive. a. If $\int_1^{\infty} f(x) dx$ converges, then $\sum_{n=1}^{\infty} a_n$ an converges. b. If $\int_1^{\infty} f(x) dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ an diverges.

2. p-test

The *p*-series $\sum_{n=1}^{\infty} 1/n^p$ converges if p > 1 and diverges if $p \le 1$.

3. Comparison Test

Suppose $0 \le a_n \le b_n$ for all n beyond a certain value. a. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. b. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

4. Limit Comparison Test

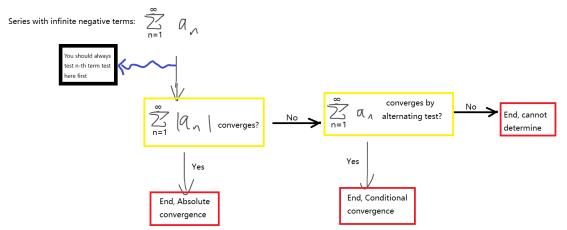
Suppose $a_n > 0$ and $b_n > 0$ for all n. If $\lim_{n\to\infty} a_n/b_n = c$ where c > 0, then the two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge.

- 5. Convergence of Absolute Values Implies Convergence If $\sum_{n=1}^{\infty} |a_n|$ converges, then so does $\sum_{n=1}^{\infty} a_n$.
- 6. The Ratio Test For a series $\sum_{n=1}^{\infty} a_n$, suppose the sequence of ratios $|a_{n+1}|/|a_n|$ has a limit: $\lim_{n\to\infty} |a_{n+1}|/|a_n| = L$, then
 - If L < 1, then $\sum_{n=1}^{\infty} a_n$ converges.
 - If L > 1, or if L is infinite, then $\sum_{n=1}^{\infty} a_n$ diverges.

- If L = 1, the test does not tell anything about convergence of $\sum_{n=1}^{\infty} a_n$ (!).
- 7. Alternating Series Test A series of the form $\sum_{n=1}^{\infty} (-1)^{n-1}a_n = a_1 a_2 + a_3 a_4 + \ldots + (-1)^{n-1}a_n + \ldots$ converges if $0 < a_{n+1} < a_n$ for all n and $\lim_{n \to \infty} a_n = 0$. Error of alternating test: let $S = \lim_{n \to \infty} S_n$, then have $|S - S_n| < a_{n+1}$.

Notably, We say that the series $\sum_{n=1}^{\infty} a_n$ is

- absolutely convergent if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} |a_n|$ both converge.
- conditionally convergent if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges.

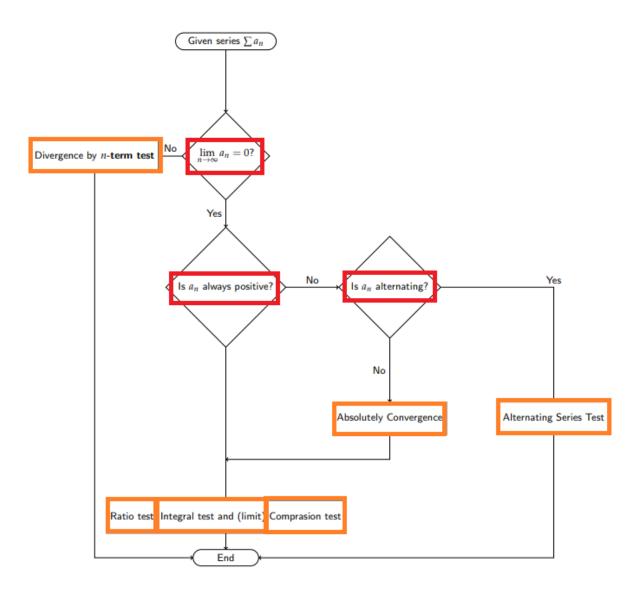


Test we consider for proving convergence:

- 1. The integral test
- 2. p-test
- 3. Comparison test
- 4. Limit comparison test
- 5. Check the absolute convergence of the series
- 6. Ratio Test
- 7. Alternating Series Test

Test we consider for proving divergence:

- 1. The integral test
- 2. p-test
- 3. Comparison test
- 4. Limit comparison test
- 5. Ratio Test
- 6. Check $\lim_{n\to\infty} \neq 0$ or $\lim_{n\to\infty} \text{ does not exist.}$



6.3 Geometric Series

There is a special series that we learn about, which is the Geometric Series, notice that the formula on the right hand side is what we called closed form. A finite geometric series has the form

$$a + ax + ax^{2} + \dots + ax^{n^{2}} + ax^{n^{1}} = \frac{a(1 - x^{n})}{1 - x}$$
 For $x \neq 1$

An infinite geometric series has the form

$$a + ax + ax^{2} + \dots + ax^{n^{2}} + ax^{n^{1}} + ax^{n} + \dots = \frac{a}{1 - x}$$
 For $|x| < 1$

6.4 Power Series

Definition 6.1. A power series about x = a is a sum of constants times powers of (x - a):

 $C_0 + C_1(x-a) + C_2(x-a)^2 + \ldots + C_n(x-a)^n + \ldots = \sum_{n=0}^{\infty} C_n(x-a)^n.$

Moreover, each power series falls into one of the three following cases, characterized by its radius of convergence, R.

- The series converges only for x = a; the radius of convergence is defined to be R = 0.
- The series converges for all values of x; the radius of convergence is defined to be $R = \infty$.
- There is a positive number R, called the radius of convergence, such that the series converges for |x a| < R and diverges for |x a| > R.

How to find radius of convergence: consider ratio test

The interval of convergence is the interval between a - R and a + R, including any endpoint where the series converges.

6.5 Taylor Polynomial

Taylor Polynomial of Degree *n* Approximating f(x) for *x* near *a* is

$$f(x) \approx P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

We call $P_n(x)$ the Taylor polynomial of degree *n* centered at x = a, or the Taylor polynomial about x = a.

6.6 Taylor Series

Taylor Series for f(x) about x = a is

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

We call $P_n(x)$ the Taylor polynomial of degree *n* centered at x = a, or the Taylor polynomial about x = a.

 $f^{(n)}(a) = \{\text{coefficient of } x^n\} * n!.$

Moreover, there are several important cases that we consider, each of them is an Taylor expansion of a function about x = 0:

• $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \frac{x^8}{8!} + \cdots$ converges for all x

•
$$\sin(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \cdot (-1)^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 converges for all x

•
$$\cos(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \cdot (-1)^n = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 converges for all x

•
$$(1+x)^p = \sum_{k=0}^{\infty} {p \choose k} x^k = \sum_{k=0}^{\infty} \frac{p!}{k!(p-k)!} x^k = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \cdots$$
 converges for $-1 < x < 1$.

•
$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots,$$

Moreover, we can definitely find Taylor Series based on the existing series using four methods:

Substitude/Differentiate/Integrate /Multiply

7 Parametric Equations and Polar Coordinate

7.1 Parametric Equations

Summarize, we have the slope: $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$ and the concavity of the parametrized curve to be $\frac{d^2y}{dx^2} = \frac{(dy/dx)/dt}{dx/dt}$

The quantity $v_x = dx/dt$ is the instantaneous velocity in the x-direction; $v_y = dy/dt$ is the instantaneous velocity in the y-direction. And we call that (v_x, v_y) to be the velocity vector.

The instantaneous speed : $v = \sqrt{(dx/dt)^2 + (dy/dt)^2} = \sqrt{(v_x)^2 + (v_y)^2}$.

Moreover, the distance traveled from time a to b is $\int_a^b v(t)dt = \int_a^b \sqrt{(dx/dt)^2 + (dy/dt)^2} dt$

7.2 Polar Coordinate

7.2.1 Relation between Cartesian and Polar

Cartesian to Polar: $(x, y) \to (r = \sqrt{x^2 + y^2}, \theta)$ (Here we have that $\tan \theta = \frac{y}{x}$) θ does not have to be $\arctan(\frac{y}{x})!$ Polar to Cartesian: $(r, \theta) \to (x = r \cos \theta, y = r \sin \theta)$

7.2.2 Slope, Arc length and Area in Polar Coordinates

slope of to be $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ The arc length from angle *a* to *b* is $\int_a^b \sqrt{(dx/d\theta)^2 + (dy/d\theta)^2} d\theta = \int_a^b \sqrt{r^2 + (dr/d\theta)^2} d\theta$ Fact: area of the sector is $1/2r^2\theta$, we have that for a curve $r = f(\theta)$, with $f(\theta)$ continuously of the same sign, the area of the region enclosed is $\frac{1}{2} \int_a^b f(\theta)^2 d\theta$